

Orange Water and Sewer Authority
OWASA is Carrboro-Chapel Hill's not-for-profit public service agency delivering high quality water, wastewater, and reclaimed water services.

Dechlorination Plan for Flushing and Discharging Super-Chlorinated Water

Project Name:					Neighborhood:	
Phase:			Contractor:		Contract Number:	
Methods and Equipment to Be Used:						
Location 1:				Source Location Address (attach map if necessary):		
Proposed Date:		Pipe Size:		Discharge Location (attach map if necessary):		
Start Time:	End Time:	Pipe Length:		Max Flow Rate of Diffuser:		Anticipated Gallons of Captor:
Chlorine to Remove, ppm:		Volume of Super-Chlorinated Water:		Anticipated Discharge Rate:		Anticipated Captor Feed Rate:
Location 2:				Source Location Address (attach map if necessary):		
Proposed Date:		Pipe Size:		Discharge Location (attach map if necessary):		
Start Time:	End Time:	Pipe Length:		Max Flow Rate of Diffuser:		Anticipated Gallons of Captor:
Chlorine to Remove, ppm:		Volume of Super-Chlorinated Water:		Anticipated Discharge Rate:		Anticipated Captor Feed Rate:
Location 3:				Source Location Address (attach map if necessary):		
Proposed Date:		Pipe Size:		Discharge Location (attach map if necessary):		
Start Time:	End Time:	Pipe Length:		Max Flow Rate of Diffuser:		Anticipated Gallons of Captor:
Chlorine to Remove, ppm:		Volume of Super-Chlorinated Water:		Anticipated Discharge Rate:		Anticipated Captor Feed Rate:
Location 4:				Source Location Address (attach map if necessary):		
Proposed Date:		Pipe Size:		Discharge Location (attach map if necessary):		
Start Time:	End Time:	Pipe Length:		Max Flow Rate of Diffuser:		Anticipated Gallons of Captor:
Chlorine to Remove, ppm:		Volume of Super-Chlorinated Water:		Anticipated Discharge Rate:		Anticipated Captor Feed Rate:

Note: Contractor is responsible for ensuring and verifying effective field dechlorination occurs. Engineer / Construction Manager must be present before the start of flushing super-chlorinated water.

Plan Submitted by:

Signature	Name	Phone Number	Date

Plan Submittals Reviewed by:
OWASA Reviewer Signature Name Date

Field Inspection Performed by:

Date

Dechlorination Plan Calculations Worksheet

1. Determine the Total Volume of Water to be dechlorinated in gallons.

Volume in gallons $=3.14 x$ (radius of pipe in feet, squared)* x length of pipe in feet $x 7.48$
For example: 5000 feet of 8 " ductile iron pipe *rounded up
$3.14 \times(.333 \times .333) \times 5000 \times 7.48=13,023$ gallons to be dechlorinated
$3.14 \times($ \qquad x \qquad) x \qquad feet of pipe $\times 7.48=$ \qquad gallons to be dechlorinated
2. Determine the parts per million of chlorine $\left(\mathrm{Cl}_{2}\right)$ to be dechlorinated.

Liquid Sodium Hypochlorite, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
Chlorine level in ppm $=\left(\right.$ Gallons $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \times$ percent $\left.\mathrm{Cl}_{2} \times 10,000\right) /$ gallons of water
For example: Fed 30.0 gallons of $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(30.0 gallons $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \times 5 \times 10,000$) / 13,023 = 115 ppm
\qquad gallons $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \mathrm{x}$ \qquad \% $\mathrm{Cl}_{2} \times 10,000$ / \qquad gallons of water = \qquad $=\mathrm{ppm} \mathrm{Cl} 2$

Dry Calcium Hypochlorite, $\mathrm{Ca}(\mathrm{ClO})_{2}$
Chlorine level in ppm = (pounds $\mathrm{Ca}(\mathrm{ClO})_{2} \times$ percent $\left.\mathrm{Cl}_{2} \times 1199\right) /$ gallons of water
For example: Fed 19.3 pounds of $65 \% \mathrm{Ca}(\mathrm{ClO})_{2}$
(19.3 pounds $\left.\mathrm{Ca}(\mathrm{ClO})_{2} \times 65 \times 1199\right) / 13,023=115 \mathrm{ppm}$
\qquad pounds $\mathrm{Ca}(\mathrm{ClO})_{2} \mathrm{x}$ \qquad \% $\mathrm{Cl}_{2} \times 1199$ / \qquad gallons of water = \qquad ppm Cl 2
3. Determine the amount of Calcium Thiosulfate, $\mathrm{Ca}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)$ - Captor ${ }^{\circledR}$ liquid needed for the project.

Gallons of Captor ${ }^{\circledR}=$ Volume of water (gallons) ${ }^{*} \times \mathrm{Cl}_{2}$ Concentration (ppm) / 200,000 ${ }^{\dagger}$
For example: $\quad 13,023$ gallons of water $\times 115 \mathrm{ppm} \mathrm{Cl} 2 / 200,000$

* rounded up
${ }^{\dagger}$ factor is specific to Captor ${ }^{\oplus}$
\qquad gallons of water x \qquad ppm Cl $2 / 200,000=$ \qquad Gallons of Captor ${ }^{\circledR}$

4. Determine the dechlorination device's Flow Rate.

From the manufacturers' information. Typically, 160 GPM for standard tablet diffusers.
5. Identify the Captor ${ }^{\circledR}$ feed rate.

Feed rate is determined by using the total amount of Captor ${ }^{\circledR}$ needed in gallons, divided by the flushing duration based on the limiting or set flow rate in GPM.

Time of flushing = gallons of water / flow rate
Captor ${ }^{\circledR}$ Feed rate $=$ gallons of Captor ${ }^{\circledR} /$ Time of flushing.
For example: 13,023 gallons of water / 160 GPM = 81.4 minutes
7.5 gallons of Captor ${ }^{\circledR} / 81.4$ minutes $=$ Captor $^{\circledR}$ feed rate of 0.092 GPM
\qquad gallons of water / \qquad GPM flow rate = \qquad minutes of flushing
\qquad gallons of Captor ${ }^{\circledR}$ / \qquad minutes of flushing $=$ \qquad GPM Captor ${ }^{\circledR}$ feed rate

