Dechlorination Plan for Flushing and Discharging Super-Chlorinated Water

<table>
<thead>
<tr>
<th>Location</th>
<th>Source Location Address (attach map if necessary):</th>
<th>Proposed Date</th>
<th>Pipe Size</th>
<th>Discharge Location (attach map if necessary):</th>
<th>Start Time</th>
<th>End Time</th>
<th>Pipe Length</th>
<th>Max Flow Rate of Diffuser:</th>
<th>Anticipated Gallons of Captor:</th>
<th>Chlorine to Remove, ppm:</th>
<th>Volume of Super-Chlorinated Water:</th>
<th>Anticipated Discharge Rate:</th>
<th>Anticipated Captor Feed Rate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 1</td>
<td></td>
</tr>
<tr>
<td>Location 2</td>
<td></td>
</tr>
<tr>
<td>Location 3</td>
<td></td>
</tr>
<tr>
<td>Location 4</td>
<td></td>
</tr>
</tbody>
</table>

Note: Contractor is responsible for ensuring and verifying effective field dechlorination occurs. Engineer / Construction Manager must be present before the start of flushing super-chlorinated water.

Plan Submitted by:

<table>
<thead>
<tr>
<th>Signature</th>
<th>Name</th>
<th>Phone Number</th>
<th>Date</th>
</tr>
</thead>
</table>

Plan Submittals Reviewed by:

<table>
<thead>
<tr>
<th>OWASA Reviewer Signature</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
</table>

Field Inspection Performed by:

<table>
<thead>
<tr>
<th>OWASA Inspector Signature</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
</table>
Dechlorination Plan Calculations Worksheet

1. Determine the Total Volume of Water to be dechlorinated in gallons.

 Volume in gallons = $3.14 \times (\text{radius of pipe in feet, squared}) \times \text{length of pipe in feet} \times 7.48$

 For example: 5000 feet of 8” ductile iron pipe

 $3.14 \times (0.333 \times 0.333) \times 5000 \times 7.48 = 13,023$ gallons to be dechlorinated

 $3.14 \times (\underline{\text{____}} \times \underline{\text{____}}) \times \underline{\text{________}} \text{feet of pipe} \times 7.48 = \underline{\text{________}} \text{gallons to be dechlorinated}$

2. Determine the parts per million of chlorine (Cl$\textsubscript{2}$) to be dechlorinated.

 Liquid Sodium Hypochlorite, Na$_2$S$_2$O$_3$

 Chlorine level in ppm = $\frac{(\text{Gallons Na}_2\text{S}_2\text{O}_3 \times \text{percent Cl}_2 \times 10,000)}{\text{gallons of water}}$

 For example: Fed 30.0 gallons of 5% Na$_2$S$_2$O$_3$

 $(30.0 \text{ gallons Na}_2\text{S}_2\text{O}_3 \times 5 \times 10,000) / 13,023 = 115$ ppm

 $(\underline{\text{____}} \text{gallons Na}_2\text{S}_2\text{O}_3 \times \underline{\text{____}} \% \text{Cl}_2 \times 10,000) / \underline{\text{____}} \text{gallons of water} = \underline{\text{____}} = \text{ppm Cl}_2$

 Dry Calcium Hypochlorite, Ca(ClO)$_2$

 Chlorine level in ppm = $\frac{(\text{pounds Ca(ClO)}_2 \times \text{percent Cl}_2 \times 1199)}{\text{gallons of water}}$

 For example: Fed 19.3 pounds of 65% Ca(ClO)$_2$

 $(19.3 \text{ pounds Ca(ClO)}_2 \times 65 \times 1199) / 13,023 = 115$ ppm

 $(\underline{\text{____}} \text{pounds Ca(ClO)}_2 \times \underline{\text{____}} \% \text{Cl}_2 \times 1199) / \underline{\text{____}} \text{gallons of water} = \underline{\text{____}} \text{ppm Cl}_2$

3. Determine the amount of Calcium Thiosulfate, Ca(S$_2$O$_3$)$_2$- Captor$®$ liquid needed for the project.

 Gallons of Captor$®$ = $\frac{\text{Volume of water (gallons)} \times \text{Cl}_2 \text{ Concentration (ppm)}}{200,000}$

 For example: 13,023 gallons of water x 115 ppm Cl$_2$ / 200,000

 7.5 gallons of Captor$®$ needed

 $\underline{\text{____}} \text{gallons of water} \times \underline{\text{____}} \text{ ppm Cl}_2 / 200,000 = \underline{\text{____}} \text{ Gallons of Captor}^®$

4. Determine the dechlorination device’s Flow Rate.

 From the manufacturers’ information. Typically, 160 GPM for standard tablet diffusers.

5. Identify the Captor$®$ feed rate.

 Feed rate is determined by using the total amount of Captor$®$ needed in gallons, divided by the flushing duration based on the limiting or set flow rate in GPM.

 Time of flushing = $\frac{\text{gallons of water}}{\text{flow rate}}$

 Captor$®$ Feed rate = $\frac{\text{gallons of Captor}^®}{\text{Time of flushing}}$

 For example: 13,023 gallons of water / 160 GPM = 81.4 minutes

 7.5 gallons of Captor$®$ / 81.4 minutes = Captor$®$ feed rate of 0.092 GPM

 $\underline{\text{____}} \text{gallons of water} \div \underline{\text{____}} \text{ GPM flow rate} = \underline{\text{____}} \text{ minutes of flushing}$

 $\underline{\text{____}} \text{gallons of Captor}^® \div \underline{\text{____}} \text{ minutes of flushing} = \underline{\text{____}} \text{ GPM Captor}^® \text{ feed rate}$

Rev. April 29, 2020